Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.

Identifieur interne : 000888 ( Main/Exploration ); précédent : 000887; suivant : 000889

Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.

Auteurs : José F. Da Silva Neto [Brésil] ; Caroline C. Negretto ; Luis E S. Netto

Source :

RBID : pubmed:23071722

Descripteurs français

English descriptors

Abstract

Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.

DOI: 10.1371/journal.pone.0047090
PubMed: 23071722
PubMed Central: PMC3469484


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.</title>
<author>
<name sortKey="Da Silva Neto, Jose F" sort="Da Silva Neto, Jose F" uniqKey="Da Silva Neto J" first="José F" last="Da Silva Neto">José F. Da Silva Neto</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Negretto, Caroline C" sort="Negretto, Caroline C" uniqKey="Negretto C" first="Caroline C" last="Negretto">Caroline C. Negretto</name>
</author>
<author>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23071722</idno>
<idno type="pmid">23071722</idno>
<idno type="doi">10.1371/journal.pone.0047090</idno>
<idno type="pmc">PMC3469484</idno>
<idno type="wicri:Area/Main/Corpus">000795</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000795</idno>
<idno type="wicri:Area/Main/Curation">000795</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000795</idno>
<idno type="wicri:Area/Main/Exploration">000795</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.</title>
<author>
<name sortKey="Da Silva Neto, Jose F" sort="Da Silva Neto, Jose F" uniqKey="Da Silva Neto J" first="José F" last="Da Silva Neto">José F. Da Silva Neto</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo</wicri:regionArea>
<placeName>
<settlement type="city">São Paulo</settlement>
<region type="state">État de São Paulo</region>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Negretto, Caroline C" sort="Negretto, Caroline C" uniqKey="Negretto C" first="Caroline C" last="Negretto">Caroline C. Negretto</name>
</author>
<author>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Chromobacterium (drug effects)</term>
<term>Chromobacterium (genetics)</term>
<term>Chromobacterium (growth & development)</term>
<term>Chromobacterium (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Cysteine (MeSH)</term>
<term>Disulfides (chemistry)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Inverted Repeat Sequences (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (genetics)</term>
<term>Peroxidases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromobacterium (croissance et développement)</term>
<term>Chromobacterium (effets des médicaments et des substances chimiques)</term>
<term>Chromobacterium (génétique)</term>
<term>Chromobacterium (métabolisme)</term>
<term>Cystéine (MeSH)</term>
<term>Disulfures (composition chimique)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (génétique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (effets des médicaments et des substances chimiques)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Séquences répétées inversées (MeSH)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Disulfides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peroxidases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hydrogen Peroxide</term>
<term>Peroxidases</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfures</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Chromobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Chromobacterium</term>
<term>Gene Expression Regulation, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Chromobacterium</term>
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Chromobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromobacterium</term>
<term>Peroxidases</term>
<term>Protéines bactériennes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chromobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chromobacterium</term>
<term>Peroxidases</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines bactériennes</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Cysteine</term>
<term>Inverted Repeat Sequences</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Phylogeny</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cystéine</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Phylogenèse</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées inversées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23071722</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.</ArticleTitle>
<Pagination>
<MedlinePgn>e47090</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0047090</ELocationID>
<Abstract>
<AbstractText>Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>da Silva Neto</LastName>
<ForeName>José F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Negretto</LastName>
<ForeName>Caroline C</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Netto</LastName>
<ForeName>Luis E S</ForeName>
<Initials>LE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002861" MajorTopicYN="N">Chromobacterium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055029" MajorTopicYN="N">Inverted Repeat Sequences</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23071722</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0047090</ArticleId>
<ArticleId IdType="pii">PONE-D-12-15908</ArticleId>
<ArticleId IdType="pmc">PMC3469484</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 May;60(Pt 5):903-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 28;278(13):11570-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6690-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Jul 31;35(2):143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Sep;45(6):1647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:755-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Aug 2;18(15):4292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prostaglandins Leukot Essent Fatty Acids. 2005 Sep-Oct;73(3-4):283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15982863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Jun 5;166(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6345791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Nov 1;17(9):1201-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22257022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2003 Dec;12(12):2838-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 May;44(3):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Apr;193(8):1981-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Feb;188(3):842-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jun 2;359(2):433-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jan 25;264(3):1488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2643600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 30;294(5548):1871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11729303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 May;68(4):978-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2001;27(3):201-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11596879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e24201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chin Med Assoc. 2011 Oct;74(10):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22036134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Apr 16;125(15):4510-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12683821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jan 9;35(1):56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8555198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 May;180(10):2636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2004;3(1):102-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Apr;192(8):2093-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2007;7:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:21-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1865-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 1998 Aug;39(8):1529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Dec;183(24):7173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2003 Jan;71(1):205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12496167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2006 Dec 15;14(24):8307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17011197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Feb;188(4):1389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Aug 20;220(4):959-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Oct 7;20(1):131-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16209951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Aug;37(14):4812-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Aug;183(15):4405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 16;21(24):6649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12485986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Nov 30;28(4):652-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Feb;70(2):794-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11796613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2001 Jul;147(Pt 7):1775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11429455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Sep;189(17):6477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Jul;183(14):4134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Sep;189(17):6284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 26;278(52):52834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2010 Feb;6(2):316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20094649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Aug;77(4):855-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 16;285(29):21943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1992 May 1;202(2):384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1519766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2009 Mar 16;22(3):419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 May;68(4):861-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Negretto, Caroline C" sort="Negretto, Caroline C" uniqKey="Negretto C" first="Caroline C" last="Negretto">Caroline C. Negretto</name>
<name sortKey="Netto, Luis E S" sort="Netto, Luis E S" uniqKey="Netto L" first="Luis E S" last="Netto">Luis E S. Netto</name>
</noCountry>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Da Silva Neto, Jose F" sort="Da Silva Neto, Jose F" uniqKey="Da Silva Neto J" first="José F" last="Da Silva Neto">José F. Da Silva Neto</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000888 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000888 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23071722
   |texte=   Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23071722" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020